

Defining the Zero Emission Buildings Standard for the MENA region

IKI Project: Accelerating 0-emission building sector ambitions in the MENA region (BUILD_ME)

September 2024

Contents

Introduction to the BUILD_ME project

Introduction to the BUILD_ME Project

BUILD_ME Defining the Zero Emission Buildings standard for the MENA region

Overarching storyline of BUILD_ME phases

Objectives of current third phase of BUILD_ME

March 2023 – March 2025

Technical

More robust tools, allowing for stronger support

- Further develop the BEP tool
- Roll out energy performance certificate EPC scheme with the national agencies
- Trainings

Green financial products for buildings

Financial

- Matchmaking between financial institutions and pilot project developers interested in receiving green finance.
- Facilitating green finance for buildings projects.

Policy

EE of buildings Contributing to national policies

- National energy efficiency Strategies
- Simplification and updates of EEBC.
- Demand Driven

Relevance of our today's topic to the third phase of BUILD_ME

March 2023 – March 2025

	y
E	

More robust tools, allowing for stronger support

- Further develop the BEP tool
- Roll out energy performance certificate EPC scheme with the national agencies
- Trainings

Green financial products for buildings

- Matchmaking between financial institutions and pilot project developers interested in receiving green finance.
- Facilitating green finance for buildings projects.

EE of buildings Contributing to national policies

- National energy efficiency Strategies
- Simplification and updates of EEBC.
- Demand Driven

Introduction to today's webinar topic

maillandelah

Defining the Zero Emission Buildings (ZEB) Standard for the MENA region

Zero Emission Buildings

a Crucial Element of a Climate Neutral Energy System

Transition to Zero Emission Energy Systems in MENA

Lack of an Overarching Strategy

- Low-efficient buildings causing a high energy demands which require extremely high efforts for a renewable energy supply
- Risk of failure of the transition.

Key Question: What is the **most cost-effective** solution for balancing investments in:

- Energy efficiency improvements?
- Renewable energies?
- Energy storage systems?

Challenges of the Uptake of ZEBs in the MENA Region

Financial Focus on Investment Costs

- Economical crises and high inflation rates limit the available investment capital an access financing.
- Low subsidized energy prices increase or prevent payback.

Awareness and Experience

- Low relevance of climate change topic due to a variety of other more concretely issues.
- Lack of experience with sustainable and efficient constructions and technologies
- Weak building policies
 Iow ambitious regulations, poor compliance, to little additional
 initiatives

Proposed Methodology Defining the Zero Emission Buildings Standard for the MENA region

International Definitions of Zero Emission/Energy Buildings

Overview of some selected definitions on ZEBs

Balanced approach to identify ZEBs for the MENA region

Step 1: Determine financially acceptable cost range

Identification of cost optimal building specifications

Define Boundary Conditions:

- Reference climate
- Reference buildings
- Investment costs of measures
- Energy costs and trends
- Net metering subsidies
- Interest rates, ...

Perform Calculations

For various building configurations (incl. PV) determine:

- Energy Demand
- Global Costs (OPEX+ CAPEX over 20 years)

BEP-tool

Identify Cost Optimal Configuration

Identify the configurations with:

- Lowest Global Costs
- Specify an Acceptable Cost Range (e.g. +1 %)

Step 2: Determine the right balance between EE and RE

Identification of cost optimal ZEB-configuration

Precondition:

- Building-related energy demand (electricity) must be fully met by appropriately sized PV and batterystorage systems.
- => Final energy demand = 0

Perform Calculations:

• Determine global costs of different ZEB configurations.

Low Efficiency => Large PV+BAT

High Efficiency => Small PV+BAT

Identify Cost-Optimal ZEB-Configuration:

Configuration with the lowest global costs

Step 3: Define Cost-Effective & Future-Ready Requirements

The Zero Emission Ready Building (ZERB)

Define Energy Efficiency Requirements:

• Ensure the efficiency of the costoptimal ZEB is within the acceptable cost range of the step 1-cost-opt calculations.

Define PV and Battery Requirements:

- Baseline: step 1-cost-optimum
- Consider acceptable cost range and roof size limitations

Avoid Lock-in Effect:

 If PV and/or batteries are not financially feasible, ensure at least preparations are made for future installation.

Example Egypt Identify ZERB-Specifications for a Large Multifamily House

Step 1: Identify Cost Optimum for a Large Multifamily House 1a: General Boundary Conditions

Climate: Cario

Reference building

Multi-Family House Specifications

- Net floor area: 2,604 m²
- Roof area: 576 m²
- Opaque wall area: 1,878 m²
- Window area: 470 m²
- Ground floor area: 576 m²
- AC System: Single-split units
- DHW System: Dedicated electric heater
- Lighting system: LED
- Internal loads (average): 3.5 W/m²

Step 1: Identify Cost Optimum for a Large Multifamily House

1b) Specify Variants for the Calculations

248

Variants of packages (incl. EE+RE measures) have been considered to determine the cost optimal range

BUILD_ME Defining the Zero Emission Buildings standard for the MENA region

Step 1: Identify Cost Optimum for a Large Multifamily House 1c: Results

The key specifications of the identified cost-optimal variant:

Roof and walls: u=0.48 W/m ² K (=> 6 cm insulation)		
Ground floor:	u=0.60 W/m ² K (=> 4 cm insulation)	
Windows:	double glazed with solar coating	
	(u=1.5 W/m²K; SHCG=0.3)	
AC:	high efficiency split units (EER=5.6)	
Shading:	Fixed shading elements	
PV:	Νο	

Step 2: Balance Energy Efficiency & Renewable Energy Results

The key specifications of the identified cost-optimal **ZEB** variant:

Roof and walls: u=0.30 W/m²K (=> 10 cm insulation)

Ground floor:	u=0.60 W/m ² K (=> 4 cm insulation)
Windows:	double glazed with solar coating
	(u=1.5 W/m²K; SHCG=0.3)
AC:	high efficiency split units (EER=5.6)
Shading:	Fixed shading elements
PV:	20 W/m ² net floor area
Battery :	36 Wh/m ² net floor area

Step 3: Derive Cost-Effective & Future-Proof Requirements Results

The key specifications of the identified cost-optimal variant:

Roof and walls: u=0.30 W/m ² K (=> 10 cm insulation)		
Ground floor:	u=0.60 W/m ² K (=> 4 cm insulation)	
Windows:	double glazed with solar coating	
	(u=1.5 W/m²K; SHCG=0.3)	
AC:	high efficiency split units (EER=5.6)	
Shading:	Fixed shading elements	
PV:	20 W/m ² net floor area	

Summary Defining the Zero Emission Buildings standard for the MENA region

ZEB ready (ZERB) methodology

universally suitable for

Warm & Hot Climates

Diverse Building Types

Country Specific Financial & Technical Boundary Conditions

Benefits of (ZERBs) compared to Common Building Practices

Based on calculations for Egypt, Jordan, and Lebanon

• 70% to 90% Reduction in Final Energy Demand

Significant energy savings lead to lower utility costs and improved environmental sustainability.

15% to 30% Lower Global Costs

Long-term financial savings due to energy efficiency and reduced operational expenses.

Short Payback Periods (typically around 3 years)

of the additionally required investment costs (usually around 5 %)

Overarching characteristics of the ZERBs

Key Features

Thermal Insulation

Insulated roofs and walls (in some cases also floor insulation).

• Double Glazing

Partly solar-coated or triple glazing in some cases.

- Effective Shading
- High-Efficient Technical Building Systems

Specifically, AC systems.

Photovoltaic Systems (PV)

In areas with net metering subsidies.

Use of Sustainable Materials

Where possible without significant increase of overall investment costs.

BUILD_ME Defining the Zero Emission Buildings standard for the MENA region

Zero Emission Buildings are Feasible and Ready to be Implemented in the MENA region

Let's act now!

Survey

https://forms.office.com/r/LEHvvBWxwY

Connect with us:

Visit us on the web at **www.buildings-mena.com**

Download our **publications** and explore our **resources**

Sign up for our **newsletter** by emailing us at **BUILD_ME@guidehouse.com**

©2020 Guidehouse All rights reserved.

Contact

Riadh Bhar riadh.bhar@guidehouse.com

Markus Offermann markus.offermann@guidehouse.com

©2020 Guidehouse Inc. All rights reserved. This content is for general information purposes only, and should not be used as a substitute for consultation with professional advisors.

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

/